Nonlinear Principal Component Analysis, Manifolds and Projection Pursuit

نویسندگان

  • Stéphane Girard
  • Serge Iovleff
  • S. Iovleff
چکیده

Auto-associative models have been introduced as a new tool for building nonlinear Principal component analysis (PCA) methods. Such models rely on successive approximations of a dataset by manifolds of increasing dimensions. In this chapter, we propose a precise theoretical comparison between PCA and autoassociative models. We also highlight the links between auto-associative models, projection pursuit algorithms, and some neural network approaches. Numerical results are presented on simulated and real datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Characterization of Principal Components for Projection Pursuit

Principal Component Analysis is a technique often found to be useful for identifying structure in multivariate data. Although it has various characterizations (Rao 1964), the most familiar is as a variance-maximizing projection. Projection pursuit is a methodology for selecting low-dimensional projections of multivariate data by the optimization of some index of \interestingness" over all proje...

متن کامل

Algorithms for projection-pursuit robust principal component analysis

Principal Component Analysis (PCA) is very sensitive in presence of outliers. One of the most appealing robust methods for principal component analysis uses the Projection-Pursuit principle. Here, one projects the data on a lower-dimensional space such that a robust measure of variance of the projected data will be maximized. The Projection-Pursuit based method for principal component analysis ...

متن کامل

Robust Principal Component Analysis by Projection Pursuit

Different algorithms for principal component analysis (PCA) based on the idea of projection pursuit are proposed. We show how the algorithms are constructed, and compare the new algorithms with standard algorithms. With the R implementation pcaPP we demonstrate the usefulness at real data examples. Finally, it will be outlined how the algorithms can be used for robustifying other multivariate m...

متن کامل

مدل ترکیبی تحلیل مؤلفه اصلی احتمالاتی بانظارت در چارچوب کاهش بعد بدون اتلاف برای شناسایی چهره

In this paper, we first proposed the supervised version of probabilistic principal component analysis mixture model. Then, we consider a learning predictive model with projection penalties, as an approach for dimensionality reduction without loss of information for face recognition. In the proposed method, first a local linear underlying manifold of data samples is obtained using the supervised...

متن کامل

Three-Dimensional Projection Pursuit

The development and usage of a three-dimensional projection pursuit software package is discussed. The well-established Jones and Sibson moments index is chosen as a computationally efficient projection index to extend to 3D. Computer algebraic methods are extensively employed to handle the long and complex formulae that constitute the index and are explained in detail. A discussion of importan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007